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Abstract. Using an appropriate momentum function for Bloch electrons moving in a single
energy band, we are able to obtain the effective force balance equation with the Bittiker-Thomas
reduction factor by calculating the rate of change of the total momentum from the Heisenberg
equation of motion.

For a system consisting of N electrons subject to a uniform electric field ¥ and subject to
impurity and phonon scatterings, the universal momentum theorem, ie. the rate of change
of the total momentum of a system equals the total force exerted on it, is usually expressed
as

dPjdt = NeE + Fy, )

where P is the total momentum, e is the electron charge and Fy. stands for the total force
due to impurity and phonon scatterings. Such an expression of the momentum theorem,
however, may not be valid when these electrons are moving in a crystal or in a superlattice,
where the existence of the periodic potential results in additional momentum change that can
not be folly included by modifying F, only. Biittiker and Thomas (BT) {1,2] pointed out
that the Bragg momentum loss at the Brillouin zone boundary reduces the effect of the field
acceleration, leading to a reduction factor of NeE. From the viewpoint of the Boltzmann
equation, this reduction factor stems from the nonzero surface integral in the momentum
equation for an energy band of finite width [3]. In this letter we show that the BT reduction
factor and the necessary modification of Fy, for a general energy band can be derived from
the Heisenberg equation of motion with an effective Hamiltonian for Bloch electrons. when
the appropriate momentum function is used in the calculation of the momentum change.

We consider an interacting electron system which consists of N electrons moving within
a single energy band under the influence of a uniform electric field E and being scattered
by phonons and by randomly distributed impurities. The Hamiltonian of the system can be
written in the form (ki = 1 = kg)

H=H,+Hg+H,+ Hep- (2

HE=-€E'ZTJ . ‘ (3)
J

Here
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is the electric potential of the uniform field, in which r; represents the spatial position of
the jth electron and e the electron charge. H,; and H,, are, respectively, electron-impurity
and eleciron—phonon interactions,

Hi= ) u(g)e"p @
q.a

Hep =) M{g, M)éerg )
q,)

where R, stands for the impurity position, u(g) and M{g, A) are the Fourier representations
of the impurity potential and electron—phonon coupling matrix element, ¢g = by + bf_q,L is
the phonon field operator, and

pg = e ©
4

is the Fourier representation of the electron density operator. The electron Hamiltonian H,
is composed of a single-particle part plus the electren—electran Coulomb interaction:

H, = Hy+ H,, )]
where
’ 1
Hee = % el —7y) = o g ve(2) 0g0—q (8)

(ve(ri — 1) = €2 /18meo(ry — T))], velg) = €2/(€gg?), and V is the volume of the system),
and Ho = 3, &), ' '
v
hy = _iﬁt +V(r) )

being the single-particie Hamiltonian for an electron with mass m, in the presence of the
lattice periodic potential V{r). Restricting our discussion to electrons in a single energy
band, we can describe the electron state by a lattice wave vector k& within the Brillouin zone
(BZ) (together with a spin index o), with eigen-wave function ¥, (v} and eigenenergy £(k):

b (1) = £(k) o (7). (10)

It is convenient to use a periodic zone scheme, ie. to allow lattice vector k to extend
beyond the BZ such that k has a continuous spectrum covering the entire three-dimensional
space but with the convention that, for any reciprocal fattice vector G, k and k4G represent
the same electron state. A physical quantity, which must be a function of the electron state,
is a pericdic function of % in the periodic zone scheme. It is now well established [4]
that, with the energy function extended this way, e(k) = (& + &), when limiting electron
motion within this single band one can use the following operator function:

e(—iV)) = &(k;) (11)

as an effective Hamiltonian to replace k; of equation (9). Here I::; = —iV; is the lattice
momentum operator of the jth electron. In the periodic zone scheme, ¥ (7} can be treated
as the eigenstate of operator & with eigenvalue k. We have the commutation relation
(@, f=xy72)

[Fias ki) = i8ap i B¢Y)

between this lattice momentum operator and the spatial coordinate of the electron.
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Let p(k) be the momentum of an electron in the state k. p(k) is a function of state.
Therefore it must be a periodic function of k in the periodic zone scheme:

plk) =pk + G). (13)
Inside the BZ, we should have 7
pk) =k, , (14)

The momentum function p(k) is thus uniquely determined by these two relations. Unlike
the velocity function

v(k) = Ve(k) (13)

which is a periodic and continuous function of & (because the energy function z(k) is a
periodic and continuous function), the momentam function p(k) is not a continuoas function
in the periodic zone scheme but has a jump of a reciprocal lattice momentum at the BZ
boundary. The physical meaning of this discontinuity is the Bragg scattering: an electron
reaching (due to some kind of driving force or scattering) the BZ boundary from inside
will suffer a momentum loss equal to a reciprocal lattice momentum. This discontinuity of
the p(k) function at the BZ boundary gives rise to an additional term in the momentum
equation, as shown in the following.
The operator of the total momentum of the electron system is

P=>"plkpy= > pk)c),cro (16)
i

keBZ,0

Here c;rw and cg, stand for the creation and annihilation operators of the single-electron

state ¥, and the sum on the right-hand side of equation {16} runs over the entire electron
states in a-single band, i.e. k € BZ should cover a semiclosed BZ: the whole interior of the
zone and half of the zone boundary. The rate of change of the total momentum is given by
the Heisenberg equation of motion for the cperator P

P . P
T —i[P, H) = —i[P, Hy + H.. + Hg + H,; + H,p). (17)

It is easily seen that [f’ Hp]l =0 and

[P, Heel = ) toth), velr — el = Y Jiptks) +plky), ve(rs —r3)],
LiZj i#f

9
‘%[ ( a(r.—rJ))“Lp(‘a(r, _,)) ”c("r—ff)]=0- (18)

In writing the last equality we have made use of the fact that for i # j

- F] el 2 0 ]
k- = -._ —_ _. k - _>_ — :
* 131",’ la(r,- - 'l"j) J larj 13(1‘;‘ - T‘j) (19)
and the momentum function p(k) satisfies
p(k) = —p(—k). ' (20)

The calculation of the third term on the right-hand side of equation (17) yields

—i[P, Hg] = —iek - Z'r,,p(k N =eE- ZVp(k)_eE 3 Vo) el cre- 1)
i keBZ,o
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In the interior of the BZ, p(k) = k such that Vp(k) = Z (unit tensor), leading to a
contribution

eE-I Y cl,cp = NeE @2)
keBZ, 0
where
N= Y ccxe (23)
keBZ,o

is the total number of electrons in the volume V. In addition to the contribution of
equation {22), because of the jump in the p(k) function, Vp(k) yields a term with a
8-function, —RG 8(k, — ksy), around the BZ boundary position k&, where 7 stands for the
unit vector of the normal direction of the boundary surface around ky, &, = k- # and
kyn = ky - T2, and G is the reciprocal lattice vector connecting the boundary position k&, and
the position %k, on the opposite side of the BZ boundary: G = ks — k. In the vicinity of
the half of the BZ boundary that contributes, one can write the k-summation in the form of
a volume integral .

v 5 '
e ek - sl'zds [ dk, G 8k, — kbn)C;c,, Che
14 1 |4 IEAEUA |
= - ﬁ el 572 dsGdeCkg = _ﬁ el . S/z(ds kb + ds kb) Cka’ck“
v
= — m el ds kb C};:G,Ckg- (24)

Spz
Here §/2 stands for the contributing half of the BZ boundary area Spz, ds = nds, and

ds’ = —ds is the vector area element at &j, on the opposite side of the BZ boundary.
Putting contributions of equations (22) and (24) together we obtain

—i[P, Hg]l = NeE-R (25)

where the tensor operator is given by

R=TI-~ dskel, cro (26)

Spz

w3n
and n = N/V is the electron number density.

The last two terms of the right-hand side of equation (17) are resistive forces due to
impurity and phonon scatterings respectively,

=[P, Hal =Fi=—1 ) a@e"™pk+q) — (k)] prg 27
keBE.q.a
P, Hpl =Fy==i Y M@ Neplptke+q —pk&)prg.  (28)
keBZ,q.x
Here
Pra = 8k, @)l yoCho (29)

and g(k, @) is a form factor related to the wave function of the Bloch electron [3, 6].
Collecting the above results we obtain the operator equation for the rate of change of
the total momentum

4P L. .
— =NeE-R+F+F, G0
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Employing the density matrix in the nonparabolic method [3, 6] to carry out the statistical
average over the above equation, we obtain the momentum balance equation for a general
energy band: ] :

d;
dit" =eE-R+f @D
where pyg is the average electron momentum per carrier, R is a reduction factor associated

with Bragg scattering
1
R=T —— dskf(k). . 32
4m3n fgaz skf(k) (32

The momentum balance equation having a reduction factor due to Bragg scattering was first
given by Biittiker and Thomas [1]. The original BT equation takes a constant-relaxation-time
ansatz for the force: f = —y,ps. The present investigation yields the average frictional
force due to impurity and phonon scatterings of the form

1= o [ % 2 w@Plath D wlh+a) ~ p(e)]
q

Arln
xd (el -+ q) — eR)LF k) — (& + )]
1
&y Mg, DP ek, )
+ fBZ %;l (@ )I% ks @)l

2712n
- x[p(k + q) — p(R)1S(elk + @) — (k) + Qga)

®{n(Qp /T (R) — flk+ @l — FRNL - flk+ @I} (33)
In the above equation :
_ ! 3
n_mﬁzdkf(k) (34)
is the electron density, and ,
FikY =1/expl(ete —pa) — w)/ L)+ 1 {3%)

is an effective distribution function in the initial state [5, 6], incleding the average momentum
per carrier py, the electron temperature T, and the chemical potential 44 as parameters. The
identification of py as the average momentum per carrier is justified by the identity

L[5
Pa= fB Zd kkfk). (36)

Equation (31), which states the momentum theorem in a general energy band, is probably
useful in its own right. Nevertheless, often it is vltimately the average velocity (or curreat)
that is of more practical interest. In [1,2] the carrier average velocity vy is assumed to be
proportional to the average momentum:

vy =pyf/m 37

m being a constant. This relation, however, can not be justified for a nonparabolic system.
A physically acceptable identification of the average carrier velocity for a general energy
band should be

=

3
e [ S ®) (38)

where v(k) is the velocity function given by equation (15). For a tight-binding-type band
in the z-direction (e.g. a superlattice miniband), e{k;) = (A/2)(1 — cosk.d), equation (38)
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gives rise to a z-component of the average drift velocity v, which is related to the z-
direction average momentum py by vg o sin{pyd). Although this result depends on the
specific form of the energy spectrum and the distribution function (35) used for the initial
state, the carrier average velocity derived from equation (38) is always drastically different
from equation (37) for a strongly nonparabolic system. Apparently, for an accurate analysis
one should give up assumption (37) in a general energy band.

On the other hand, an acceleration balance equation can be derived if we directy
calculate the rate of change of the average carrier velocity from the Heisenberg equation
of motion {5]. The equation thus obtained describes the acceleration balance of a mass
variable particle and is not formally identical to (31} and (34) in general [5]. However,
since both sets of effective momentum balance equations include the full effects of the Bragg
scattering and the frictional forces or accelerations due to scatterings, they are expected
to yield quantitatively similar results if the average momentum and average velocity are
calculated properly. This problem is under further investigation and the detailed results will
be presented in a later publication,

The author thanks the National Natural Science Foundation of China and the National and
Shanghai Municipal Commissions of Science and Technology of China for support of this
work.
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