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Abstract. Using an appropriate momentum function for Bloch electrons moving in a single 
energy band, we are able to obtain the effective force bdance equation with the BiiUika-Thomas 
reduction factor by calculating the rate cf change of the total momentum from the Heisenberg 
equation of motion. 

For a system consisting of N electrons subject to a uniform electric field E and subject to 
impurity and phonon scatterings, the universal momentum theorem, i.e. the rate of change 
of the total momentum of a system equals the total force exerted on it, is usually expressed 

(1) 
where P is the total momentum, e is the electron charge and F,, stands for the total force 
due to impurity and phonon scatterings. Such an expression of the momentum theorem, 
however, may not be valid when these electrons are moving in a crystal or in a superlattice, 
where the existence of the periodic potential results in additional momentum change that can 
not be fuIIy included by modifying Fsc only. Biittiker and Thomas (BT) I1,2] pointed out 
that the Bragg momentum loss at the Brillouin zone boundary reduces the effect of the field 
acceleration, leading to a reduction factor of NeE. From the viewpoint of the Boltzmann 
equation, this reduction factor stems from the nonzero surface integral in the momentum 
equation for an energy band of finite width [3]. In this letter we show that the BT reduction 
factor and the necessary modification of F,, for a general energy band can be derived from 
the Heisenberg equation of motion with an effective Hamiltonian for Bloch electrons. when 
the appropriate momentum function is used in the calculation of the momentum change. 

We consider an interacting electron system which consists of N electrons moving within 
a single energy band under the influence of a uniform electric field E and being scattered 
by phonons and by randomly distributed impurities. The Hamiltonian of the system can be 
written in the form (Ti = 1 = k s )  

(2) 

(3) 

as 
dPjd t  = NeE 4- F, 

H = Ha + HE f He, + Hep. 
Here 
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is the electric potential of the uniform field, in which ~j represents the spatial position of 
the jth electron and e the electron charge. Het and He,, are, respectively, electron-impurity 
and electron-phonon interactions, 

H~~ = C u ( q ) e i p R p q  (41 
9.Y 

Heo = M(q, (5) 
4.). 

where R, stands for the impurity position, u(q) and M(q, A) ax the Fourier representations 
is 

the phonon field operator, and 

(6) 

of the impurity potential and electron-phonon coupling matrix element, @q = bqA + b-qA f 

= efPTi 

j 

is the Fourier representation of the electron density operator. The electron Hamiltonian He 
is composed of a single-particle part plus the electron-electron Coulomb interaction: 

He = Ho + H, (7) 
where 

(wc(ri - rj) = e 2 / [ 8 n ~ 0 ( r j  - rj)], u,(q) = e2/(q,q2), and v is the volume of the system), 
and HO = cj hj, 

VT 
2m, 

h .  - -2- + V ( r j )  (9) J -  

being the single-particle Hamiltonian for an electron with mass m, in the presence of the 
lattice periodic potential V ( r ) .  Restricting our discussion to electrons in a single energy 
band, we can describe the electron state by a lattice wave vector k within the Brillouin zone 
(BZ) (together with a spin index U ) ,  with eigen-wave function @ k , , ( ~ )  and eigenenergy E&): 

h @ k v ( T )  = E(k)@kko(T). (10) 

It is convenient to use a periodic zone scheme, i.e. to allow lattice vector k to extend 
beyond the BZ such that k has a continuous spectrum covering the entire three-dimensional 
space but with the convention that, for any reciprocal lattice vector G, k and k+G represent 
the same electron state. A physical quantity, which must be a function of the electron state, 
is a periodic function of k in the periodic zone scheme. It is now well established [4] 
that, with the energy function extended this way, ~ ( k )  = ~ ( k  + G), when limiting elecvon 
motion within this single band one can use the following operator function: 

E(-iVj) = ~(kj) (11) 

as an effective Hamiltonian to replace h j  of equation (9). Here &j = -ioj is the lattice 
momentum operator of  the jth electron. In the periodic zone scheme, @k,,(T) can be treated 
as the eigenstate of operator & with eigenvalue k. We have the commutation relation 
(a, B = x ,  Y, z )  

[rim, Ljpl = iS,p&tj (12) 
between this lattice momentum operator and the spatial coordinate of the electron. 
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Let p ( k )  be the momentum of an electron in the state k. p ( k )  is a function of state. 

(13) 

Therefore it must be a periodic function of k in the periodic zone scheme: 

~ ( k )  = P ( I C  + G).  
Inside the BZ, we should have 

p ( k )  = I C .  (14) 

The momentum function p ( k )  is thus uniquely determined by these two relations. Unlike 
the velocity function 

v ( k )  V&(k)  (15) 

. .  

which is a periodic and continuous function of k (because the energy function &(k) is a 
periodic and continuous function), the momentum function p(k )  is not a continuous function 
in the periodic zone scheme but has a jump of a reciprocal lattice momentum at the BZ 
boundary. The physical meaning of this discontinuity is the Bragg scattering: an eIectron 
reaching (due to some kind of driving force or scattering) the BZ boundary from inside 
will suffer a momentum loss equal to a reciprocal lattice momentum. This discontinuity of 
the p(k) function at the BZ boundary gives rise to an additional term in the momentum 
equation, as shown in the following. 

The operator of the total momentum of the electron system is 

Here CL and Cko stand for the creation and annihilation operators of the single-electron 
state &,, and the sum on the right-hand side of equation (16) runs over the entire electron 
states in a~single band, i.e. k E BZ should cover a semiclosed B Z  the whole interior of the 
zone and half of the zone boundary. The rate of change of the total momentum is given by 
the Heisenberg equation of motion for the operator P 

i[@, HI = -i[P, Ho+ He, + H E  + Hei + &I. (17) 
d P  _ = -  
dt 

It is easily seen that [P ,  Ho] = 0 and 

In writing the last equality we have made use of the fact that for i # j 

and the momentum function p ( k )  satisfies 

P(W = -P( -W.  

The calculation of the thud term on the right-hand side of equation (17) yields 
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In the interior of the BZ, p(k) = k such that Vp(k) = Z (unit tensor), leading to a 
contribution 

where 

N = Ct;,Cka 
kEB2.c 

is the total number of electrons in the volume V .  In addition to the contribution of 
equation (22), because of the jump in the p(k) function, Vp(k) yields a term with a 
&function, -AGG(k, - kbn), around the BZ boundary position kb, where A stands for the 
unit vector of the normal direction of the boundary surface around kb, k,, = k . A and 
khn = kb. A, and G is the reciprocal lattice vector connecting the boundary position kh and 
the position k; on the opposite side of the BZ boundary: G = kb - k;. In the vicinity of 
the half of the BZ boundary that contributes, one can write the k-summation in the form of 
a volume integral 

Here S/2 stands for the contributing half of the BZ boundary area SBZ, ds  = nds ,  and 
ds‘ = -ds is the vector area element at kh on the opposite side of the BZ boundary. 

Putting contributions of equations (22) and (24) together we obtain 

-$&, H E ]  = N e E  .7? (25) 
where the tensor operator is given by 

and n = N J V  is the electron number density. 

impurity and phonon scatterings respectively, 
The last two terms of the right-hand side of equation (17) are resistive forces due to 

-ilk, = & = -i u(q)e’pELIp(k 4- q)  - (k)] pkq (27) 
kEBZ.q.n 

-iIf’, &PI = p p  = -i M ( q ,  Wq,i[P(k + 9) - p8)1 Pkq. (28) 
kEBZ.q.A 

Here 

and g(k, q) is a form factor related to the wave function of the Bloch electron [5,6]. 

the total momentum 
Collecting the above results we obtain the operator equation for the rate of change of 

d P  - = N e E  .e+& +@,,. 
dt 
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Employing the density matrix in the nonparabolic method [5,6] to carry out the statistical 
average over the above equation, we obtain the momentum balance equation for a general 
energy band: 

-=  dpd e E . R + f  
dt (31) 

where pd is the average electron momentum per carrier, R is a reduction factor associated 
with Bragg scattering 

The momentum balance equation having a reduction factor due to Bragg scattering was first 
given by Biittiker and Thomas [ 11. The original BT equation takes a constant-relaxation-time 
m u t z  for the force: f = -y,,p,. The present investigation yields the average frictional 
force due to impurity and phonon scatterings of the form 

n=-LJl iLd3kf(k)  1 
4n 3 

(34) 

is the electron density, and 

f (W = l/exp[(s(k - P,) - WZ1+ 1 (35) 
is an effective distribution function in the initial state [5,6], including the average momentum 
per carrier pd, the electron temperature T,, and the chemical potential p as parameters. The 
identification of p~ as the average momentum per carrier is justified by the identity 

Equation (31). which states the momentum theorem in a general energy band, is probably 
useful in its own right. Nevertheless, often it is ultimately the average velocity (or current) 
that is of more practical interest. In [1,2] the carrier average velocity wd is assumed to be 
proportional to the average momentum: 

vd = m / m  (37) 
m being a constant. This relation, however, can not be justified for a nonparabolic system. 
A physically acceptable identification of the average carrier velocity for a general energy 
band should be 

where w(k) is the velocity function given by equation (15). For a tight-binding-type band 
in the z-direction (e.g. a superlattice miniband), &(kJ = (A/2)(l - cosk,d), equation (38) 
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gives rise to a z-component of the average drift velocity vd which is related to the z -  
direction average momentum p d  by vd o( sin(pdd). Although this result depends on the 
specific form of the energy spectrum and the distribution function (35) used for the initial 
state, the carrier average velocity derived from equation (38) is always drastically different 
from equation (37) for a strongly nonparabolic system. Apparently, for an accurate analysis 
one should give up assumption (37) in a general energy band. 

On the other hand, an acceleration balance equation can be derived if we directly 
calculate the rate of change of the average carrier velocity from the Heisenberg equation 
of motion [5]. The equation thus obtained describes the acceleration balance of a mass 
variable particle and is not formaIly identical to (31) and (34) in general [5]. However, 
since both sets of effective momentum balance equations include the full effects of the Bragg 
scattering and the frictional forces or accelerations due to scatterings, they are expected 
to yield quantitatively similar results if the average momentum and average velocity are 
calculated properly. This problem is under further investigation and the detailed results will 
be presented in a later publication. 

The author thanks the National Natural Science Foundation of China and the National and 
Shanghai Municipal Commissions of Science and Technology of China for support of this 
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